Ultrasonic hearing and echolocation in the earliest toothed whales.
نویسندگان
چکیده
The evolution of biosonar (production of high-frequency sound and reception of its echo) was a key innovation of toothed whales and dolphins (Odontoceti) that facilitated phylogenetic diversification and rise to ecological predominance. Yet exactly when high-frequency hearing first evolved in odontocete history remains a fundamental question in cetacean biology. Here, we show that archaic odontocetes had a cochlea specialized for sensing high-frequency sound, as exemplified by an Oligocene xenorophid, one of the earliest diverging stem groups. This specialization is not as extreme as that seen in the crown clade. Paired with anatomical correlates for high-frequency signal production in Xenorophidae, this is strong evidence that the most archaic toothed whales possessed a functional biosonar system, and that this signature adaptation of odontocetes was acquired at or soon after their origin.
منابع مشابه
Cetaceans on a Molecular Fast Track to Ultrasonic Hearing
The early radiation of cetaceans coincides with the origin of their defining ecological and sensory differences [1, 2]. Toothed whales (Odontoceti) evolved echolocation for hunting 36-34 million years ago, whereas baleen whales (Mysticeti) evolved filter feeding and do not echolocate [2]. Echolocation in toothed whales demands exceptional high-frequency hearing [3], and both echolocation and ul...
متن کاملIntense ultrasonic clicks from echolocating toothed whales do not elicit anti-predator responses or debilitate the squid Loligo pealeii.
Toothed whales use intense ultrasonic clicks to echolocate prey and it has been hypothesized that they also acoustically debilitate their prey with these intense sound pulses to facilitate capture. Cephalopods are an important food source for toothed whales, and there has probably been an evolutionary selection pressure on cephalopods to develop a mechanism for detecting and evading sound-emitt...
متن کاملDecreased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens).
Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing ...
متن کاملThe Origin of High-Frequency Hearing in Whales
Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in ...
متن کاملThe hearing gene Prestin unites echolocating bats and whales
Echolocation is a sensory mechanism for locating, ranging and identifying objects which involves the emission of calls into the environment and listening to the echoes returning from objects [1]. Only microbats and toothed whales have acquired sophisticated echolocation, indispensable for their orientation and foraging [1]. Although the bat and whale biosonars originated independently and diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology letters
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2016